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Abstract. The presence of quark matter in neutron stars may affect several neutron star observables
and the neutrino signal in core-collapse supernovae. These observables are sensitive to the phase of
quark matter that is present in compact objects. We present the first calculation of the phase structure
of dense quark matter which includes a six-fermion color-superconducting interaction and show that
the effect of this term can destabilize the pairing interaction, favoring phases where fewer quarks
are paired. In turn, this modification of the phase structure can modify the neutrino signal, the
structure of the neutron star, and the long-term cooling. We also show that, contrary to the 20-year
old paradigm of the surface structure of the “strange-quark stars”, the surface of these objects may
consist of nuggets of strange quark matter screened by the electron gas.

The region of the QCD phase diagram at densities above a few times 1014 g/cm3 and
temperatures on the order of 10 MeV, is highly uncertain. Observations of neutron stars
(or strange quark stars) provide us with most of the constraints on the equation of state
of matter at these densities and temperatures. One of the most dramatic features of QCD,
the deconfinement phase transition, is not well constrained by observations of compact
objects. We may entertain a couple possibilities:

1. All neutron stars may consist entirely of hadronic matter, i.e. the central density of
the maximum mass neutron star is below the critical density for the deconfinement
phase transition.

2. Some neutron stars may be sufficiently dense to contain deconfined quark matter
in their interiors. Such neutron stars are often referred to as “hybrid quark stars”.
Their central density is above the deconfinement phase transition.

3. The “strange quark matter” hypothesis may hold. Some (if not all) neutron stars
are, in fact, strange quark stars.

I report on some progress in the theoretical description of hybrid quark stars and
strange quark stars and the associated observable implications.

The description of dense quark matter has been recently revolutionized by the obser-
vation that the color-superconducting gaps may be on the order of 100 MeV [1, 2]. The
essential features of all models of gapped quark matter are the same. When the quark
chemical potential is much larger than the strange quark mass, then all nine quarks par-
ticipate in the pairing, giving the color-flavor-locked (or CFL) phase. For smaller quark
chemical potentials, the strange quark mass is more important and only 4/9 color-flavor
combinations are paired. This is the two-flavor superconducting (or 2SC) phase.

It is known that a Lagrangian with four-fermion interactions alone can not obey the
same symmetries as QCD because the axial U(1) symmetry is not broken by any four-



fermion interaction. For this reason, a six-fermion interaction, the ’t Hooft interaction,
is often included

(a) K det f ψ̄iψ jψ̄kψ`ψ̄mψn (1)

where det f indicates a determinant over flavor space and K is a coupling constant.
Although there is no reason to do so, many authors have neglected a term of the form

(b) KDIQ det f ψ̄iψC
j ψ̄C

k ψ`ψ̄mψn , (2)

where KDIQ is another coupling constant. This term is of the same order in the fermion
fields and also respects the symmetries of QCD. Ref. [3] makes the first study of this
term which includes its effect on the quark masses and the gaps.

The basic conclusion is that for sufficiently large values of the coupling constant, this
color-superconducting ’t Hooft interaction can destabilize the color-superconducting
gap. The effect is summarized in Figure 1, where the masses and gaps are given as
a function of the coupling constant for a fixed density and temperature. The dramatic
behavior of these quantities at KDIQ/K ∼ 0.4 causes the gapped phases to become
unstable.
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FIGURE 1. Quark masses and gaps versus KDIQ/K

The presence (or lack) of a gap can affect the neutrino signal of a newly-born proto-
neutron star, the cooling properties of the neutron star, and any observable which de-
pends (or might depend) on the magnitude of the size of the quark gaps in hybrid quark
stars or strange quark stars.

If the strange-quark matter hypothesis [4, 5] is correct, then strange quark matter may
be the true ground state of matter and nuclei are a metastable state. Neutron stars may
be dense enough to create a small amount of strange quark matter in the center and the
entire neutron star would then be converted from normal hadronic matter to the strange
quark matter ground state as neutrons are absorbed by the strange quark matter in the
interior.
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FIGURE 2. Equation of state

The long-standing paradigm for the description of strange quark stars is that, because
the pressure of strange quark matter vanishes at a finite density, the surface of the strange
quark star has a large density discontinuity and a large electric field [6]. However, if the
surface tension between strange quark matter and the vacuum is sufficiently small, this
paradigm may be incorrect [7] (also briefly mentioned in Ref. [8]). In fact, small droplets
(or “nuggets”) of strange quark matter may reside on the surface of a strange quark star.
These droplets create a more gradual drop in density over a length of several meters
above the neutron star. The corresponding gradual drop in the energy density is displayed
in Figure 2. The energy density drops slowly at pressures below 10−4 MeV/fm3 in
contrast to the traditional picture where the energy density would discontinuously vanish
at P = PC. Also plotted is the volume fraction of strange quark matter in droplets as
a function of the electron chemical potential in the crust. The presence of the crust
decreases the electric field substantially and also decreases the photon luminosity at the
surface. Neutrino scattering off quark nuggets in the crust will also modify the neutrino
signal in supernovae.
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